skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Munj, Seeya Awadhut"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Similar molecular and genetic aberrations among diseases can lead to the discovery of jointly important treatment options across biologically similar diseases. Oncologists closely looked at several hormone-dependent cancers and identified remarkable pathological and molecular similarities in their DNA repair pathway abnormalities. Although deficiencies in Homologous Recombination (HR) pathway plays a significant role towards cancer progression, there could be other DNA-repair pathway deficiencies that requires careful investigation. In this paper, through a biomarker-driven drug repurposing model, we identified several potential drug candidates for breast and prostate cancer patients with DNA-repair deficiencies based on common specific biomarkers and irrespective of the organ the tumors originated from. Normalized discounted cumulative gain (NDCG) and sensitivity analysis were used to assess the performance of the drug repurposing model. Our results showed that Mitoxantrone and Genistein were among drugs with high therapeutic effects that significantly reverted the gene expression changes caused by the disease (FDR adjusted p-values for prostate cancer =1.225e-4 and 8.195e-8, respectively) for patients with deficiencies in their homologous recombination (HR) pathways. The proposed multi-cancer treatment framework, suitable for patients whose cancers had common specific biomarkers, has the potential to identify promising drug candidates by enriching the study population through the integration of multiple cancers and targeting patients who respond poorly to organ-specific treatments. 
    more » « less
  2. Studies over the past decade have generated a wealth of molecular data that can be leveraged to better understand cancer risk, progression, and outcomes. However, understanding the progression risk and differentiating long- and short-term survivors cannot be achieved by analyzing data from a single modality due to the heterogeneity of disease. Using a scientifically developed and tested deep-learning approach that leverages aggregate information collected from multiple repositories with multiple modalities (e.g., mRNA, DNA Methylation, miRNA) could lead to a more accurate and robust prediction of disease progression. Here, we propose an autoencoder based multimodal data fusion system, in which a fusion encoder flexibly integrates collective information available through multiple studies with partially coupled data. Our results on a fully controlled simulation-based study have shown that inferring the missing data through the proposed data fusion pipeline allows a predictor that is superior to other baseline predictors with missing modalities. Results have further shown that short- and long-term survivors of glioblastoma multiforme, acute myeloid leukemia, and pancreatic adenocarcinoma can be successfully differentiated with an AUC of 0.94, 0.75, and 0.96, respectively. 
    more » « less